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The global human footprint currently impacts all ecosys-
tems, from the upper atmosphere to the deep sea
(Steffen et al. 2015). Direct human exploitation com-
bined with other indirect impacts such as habitat loss
and alteration, pollution or the introduction of invasive
species commonly affect keystone species worldwide,
driving potentially complex interaction chains that
remain mostly unexplored (Worm & Paine 2016),
although they have critical consequences. For instance,
in many temperate systems, humans have dramatically
altered predator assemblages, in three different ways.
First, from the 18th century, accelerated large-scale
land-use change, prey loss and, most importantly, exten-
sive persecution campaigns have led to the extinction of
almost all top predator species from important parts of
their former distribution range, particularly from low-
land farmland areas (Linnell et al. 2001). Secondly,
mesopredator communities have also been profoundly
modified. On the one hand, they may have increased in
areas thanks to top predator eradication and subsequent
mesopredator release (Pasanen-Mortensen et al. 2017).
On the other hand, mammalian mesopredators have
been heavily persecuted since the 19th century in Wes-
tern Europe and USA, mainly as a management tool to
increase small game hunting bags or protect poultry.
Institutionalized predator persecution has probably

caused large-scale mesopredator declines in abundance,
although few empirical data are available (Reynolds &
Tapper 1996). Finally, a new variable to this equation is
the increasing predation pressure exerted by feral
domestic predators on small vertebrate populations in all
human-transformed systems (Loss et al. 2013), in partic-
ular feral cats Felis catus but also feral dogs Canis lupus
familiaris, which may have an overlooked impact on bio-
diversity (Doherty et al. 2017). Feral domestic predators
may further interact with the functional role of meso-
predators through interspecific antagonistic interactions
(Krauze-Gryz et al. 2012). What are the consequences
of all these changes in terms of food-web structure and
ecosystem processes? Did these modified trophic interac-
tions cascade to lower trophic levels, i.e. herbivore abun-
dance and behaviour and thus to vegetation composition
and structure? Indeed, in many temperate systems,
predator assemblages have been so dramatically altered
that it is no longer possible to quantify trophic network
changes and past signatures will be difficult to find (but
see Sallan et al. 2011, Svenning et al. 2016, Van Valken-
burgh et al. 2016).

In anthropized landscapes, however, recent shifts in
wildlife population trends and the consequent restruc-
turing of predator communities offer the unique oppor-
tunity for researchers to take advantage of these
landscape-scale natural experiments, perhaps providing a
way to answer these questions. Indeed, starting in the
second half of last century, a triple simultaneous change
has affected the predator community. First, generalist
mesopredators have bounced back as a result of lower
hunting pressure and adaptation to anthropogenic
resources in modified landscapes (Bino et al. 2010),
sometimes at the expense of the vulnerable specialist
mesopredators (Lindstr€om et al. 1995, Henden et al.
2010, Elmhagen et al. 2015). In parallel, several top
predators, including large carnivorous mammals and
avian top predators, have recolonized previously
deserted areas (Fasce et al. 2011, Chapron et al. 2014,
Graci�a et al. 2015). In quite a few cases, recolonization
has been assisted by reinforcement or reintroduction
programmes (Dalbeck & Heg 2006, Evans et al. 2009,
Morandini et al. 2017). Despite strong scientific interest,
empirical or theoretical approaches aimed at understand-
ing potential trophic cascades triggered by the recovery
of avian top predators have been extremely rare (but see
Harvey et al. 2012). By considering natural or assisted
recolonization of avian top predators as natural experi-
ments, we have a unique opportunity to better under-
stand their role in ecosystem structure and functioning.

Secondly, humans have extensively impacted ecosys-
tem functioning, possibly changing mechanisms of bot-
tom-up regulation by increasing the productivity of
systems used by herbivores. This has resulted from
increased agricultural nitrogen subsidies and by planting
nutrient-rich crops (Vitousek et al. 1997). Therefore, we
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argue here that human agricultural practices may have
oversimplified ecosystem dynamics, shifting from top-
down effects of predators to bottom-up effects of plant
biomass availability on upper trophic levels, highlighting
a possibly hidden and overlooked effect of human influ-
ence on ecosystem functioning (Kuijper et al. 2016).

Finally, there is now some evidence that climate
change may also affect predator–prey relationships in
various ways (reviewed by Bretagnolle & Gillis 2010).
Further research is urgently needed to understand how
ecological networks respond to changes in predator com-
munity composition, particularly in anthropogenic sys-
tems undergoing rapid environmental changes. In the
particular case of top avian predators, we argue here
that we need experimental evidence as well as long-term
empirical data on their role in food webs. Worm and
Paine (2016) have suggested that food webs provide a
useful conceptual platform on which ecological conse-
quences of such global environmental changes can be
mapped, knowledge gaps identified and predictions gen-
erated. Among the most significant patterns already
identified, the disruption of trophic cascades by changing
animal and plant communities in human-transformed
ecosystems critically needs further research to predict
the robustness or fragility of ecosystem states (Montoya
et al. 2006). We first provide some theoretical back-
ground, then detail from our point of view the four
most important research areas in this field.

THEORETICAL BACKGROUND

Top-down processes in terrestrial food webs

Superpredation
In terrestrial ecosystems, trophic cascade theory predicts
that top predators structure ecosystems by regulating
sympatric carnivorous and herbivorous populations via
interactions such as predation or the generation of fear
(Beschta & Ripple 2009). It is well known that the
decline in density or distribution of a top predator can
induce the expansion in density or distribution, or the
change in behaviour of a middle-rank predator, the
‘mesopredator release’ (Prugh et al. 2009, Brashares
et al. 2010). The relative strength of top-down forces in
food webs therefore depends in part on the efficiency
with which top predators can suppress mesopredators
and exploit their prey, and thus varies spatially (Power
1992). Recent empirical and experimental advances
have highlighted the potential for top predators to help
restore ecosystems and confer resilience against environ-
mental challenges, e.g. biological invasions (Ritchie et al.
2012, Suraci et al. 2016). For example, the recoloniza-
tion of the White-tailed Eagle Haliaeetus albicilla in the
Finnish archipelago reduced American mink Neovison
vison movements, potentially mitigating their impact on

native species (Salo et al. 2008). Most recent research
on trophic cascades has focused on determining how
top predators shape and drive community structure
(Terborgh & Estes 2010, Estes et al. 2011, Ritchie et al.
2012), leading to widespread predictions that the loss of
large predators will release populations of smaller preda-
tors, as depicted by the mesopredator release hypothesis
(Crooks & Soul�e 1999, Ritchie & Johnson 2009). New-
some et al. (2017) have shown, consistently across three
continents, that mammalian top predators can suppress
sympatric mesopredators to the point of complete
exclusion, but only when top predators occur at high
densities over large areas. Their results further suggest
that these conditions are more likely to occur at the
core than on the margins of top predator ranges. Gor-
don et al. (2017) also provided evidence that the
removal of a top predator, the dingo Canis lupus dingo,
facilitated shrub encroachment in arid Australian ecosys-
tems by triggering a four-level trophic cascade. Increased
mesopredator abundance in the absence of dingoes
results in suppressed abundance of consumers of shrub
seeds and seedlings, rodents and rabbits, respectively. In
turn, suppressed abundances of rodents and rabbits in
the absence of dingoes resulted in increased seedling
survivorship and decreased seed removal by rodents.

Predator–prey interactions
If, as seen above, predator–predator interactions can
affect trophic network structure, predator–prey interac-
tions are also important, as complex lethal and
non-lethal interactions between predators and prey can
further shape ecosystem structure. Predators impact
prey through two key processes, first by directly killing
and removing individuals from the population (density-
mediated effects) and secondly through the indirect
effects of predation risk that result in prey species
modifying their behaviour (behaviourally mediated
effects; Lima 1998, Brown et al. 1999). These non-lethal
effects have a strong influence on prey fitness, with evi-
dence suggesting substantial impacts at the population
level possibly equal to, or even greater than, the
removal of individuals through direct predation (Creel
et al. 2007, Matassa & Trussell 2011). Furthermore,
the risk of predation varies across time and space, with
herbivores constantly balancing foraging effort against
the need for safety from predators (Lima & Dill 1990,
Verdolin 2006). Prey species therefore inhabit ranges
of shifting predation risk that have been termed the
‘ecology or landscape of fear’ (Ripple & Beschta 2004,
2007). The landscape of fear is specific to the prey
species and will depend on the predators to which they
are exposed, the encounter rate, predatory defence and
the effectiveness of vigilance (Lima 1998, Brown &
Kotler 2004). However, bottom-up factors, such as
food availability and habitat structure, can also
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influence predator–prey interactions (Ritchie & Johnson
2009). For example, resource abundance can temporar-
ily allow prey populations to escape predator regulation
and decouple interactions between predators (Letnic &
Dickman 2010).

Is top-down control ubiquitous in terrestrial food webs?
The overall outcomes of interactions between predators
may thus vary with resource availability, habitat struc-
ture and the complexity of predator communities
(Elmhagen & Rushton 2007, Ritchie & Johnson 2009).
Engeman et al. (2017) pointed out recently that studies
on the role and function of mammalian top predators
continue to struggle to implement study designs that
have the potential to generate the necessary reliable
evidence, many with flawed or too limited experimen-
tal designs and an overall lack of standardized and
repeated observations of populations over time, seasons,
habitats and geographical space. Allen et al. (2017)
highlighted that theories of the effects of large mam-
malian carnivores on food webs, as developed in rela-
tively pristine areas, may not be readily transferable or
applicable to the human-modified landscapes that make
up the majority of the Earth’s surface (Haswell et al.
2017, Morgan et al. 2017). This is because the direct
and indirect effects of humans (e.g. increased primary
productivity through fertilization) on all trophic levels
may simply overshadow any carnivore effects (Kuijper
et al. 2016).

Trophic cascades driven by avian top
predators

There is increasing evidence that avian top predators can
limit sympatric populations of medium- and small-sized
birds of prey through lethal and non-lethal effects, and
can structure whole raptor assemblages under certain
circumstances (Sergio & Hiraldo 2008, Lourenc�o et al.
2011).

For instance, Mueller et al. (2016) showed that the
recolonization of an avian top predator, the Eurasian
Eagle-Owl Bubo bubo (hereafter Eagle-Owl), negatively
influenced two sympatric mesopredator species, the
Common Buzzard Buteo buteo and the Northern
Goshawk Accipiter gentilis, through increased brood fail-
ure rates. This was induced by both superpredation
effects, as Eagle-Owls not only take over Goshawk and
Buzzard nests, but also kill and eat chicks and adults
(Chakarov & Kr€uger 2010), and non-lethal effects, as
mesopredators shifted to alternative breeding sites (spa-
tial avoidance of the top predator by the dominant
mesopredator, i.e. Northern Goshawk) or changed their
behaviour (the subdominant mesopredator, i.e. the Buz-
zard, showed increased aggressiveness towards the top
predator). Further evidence of multi-level intraguild

predation and superpredation exists in bird of prey
assemblages (Hoy et al. 2015, 2017, Bj€orklund et al.
2016, Morosinotto et al. 2017); however, research on
the top-down limitation of other mesopredator species
(e.g. Corvidae) by avian top predators is scarce and the
potential cascading effects at the ecosystem level have
rarely been investigated (Box 1; Fig. 1).

Evidence from island ecosystems has shown that
raptors can have strong structuring effects on animal
communities. For instance, Roemer et al. (2002)
showed that introduced pigs Sus scrofa domesticus
enabled Golden Eagles Aquila chrysaetos to colonize
the California Channel Islands by providing abundant
food. Eagles preyed heavily on the Island Fox Urocyon
littoralis, whose resulting decline toward extinction
released populations of the competitively inferior Chan-
nel Island Spotted Skunk Spilogale gracilis amphiala.
This study highlighted how indirect predator–prey
interactions between exotic introduced species and top
predators could cause major ecological shifts in island
communities. American Barn Owls Tyto furcata (previ-
ously classified Tyto alba) were also able to induce a
behaviourally mediated cascade on Santa Barbara
Island, California, such that Owls had a positive indi-
rect effect on Scripss’s Murrelet Synthliboramphus
scrippsi egg survival by reducing the foraging activity of
Deer Mice Peromyscus maniculatus elusus and thus
reducing nest predation in this threatened seabird spe-
cies (Thomsen & Green 2016). However, only a hand-
ful of studies have investigated the role of avian
predators in structuring continental food webs that are
more complex than isolated island systems. Recent
research in boreal ecosystems has further shown that
large raptors such as Golden Eagle and Northern
Goshawk seem to have a positive effect on the breed-
ing success of Black Grouse Lyrurus tetrix and Hazel
Grouse Tetrastes bonasia by enhancing fear effects on
small carnivores (Red Fox Vulpes vulpes and Pine Mar-
ten Martes martes, respectively; Lyly et al. 2015, 2016)
and reducing the pressure from corvid populations
(Tornberg et al. 2016), thus increasing juvenile grouse
survival. Finally, Greeney et al. (2015) demonstrated
that hawk territory occupancy in Arizona (USA) had a
positive indirect effect on the reproductive success of
Black-chinned Hummingbirds Archilochus alexandri,
mediated by predator avoidance shifts in foraging beha-
viour of Mexican Jay Amphelocoma wollweberi, one of
the main predators of hummingbird nests. Even though
the same logistical difficulties posed by carnivore food
web studies are applicable to raptor studies, a combina-
tion of well-designed experiments and long-term obser-
vational studies in a variety of ecosystems would bring
much-needed essential insights to our understanding of
the influence of avian top predators on the structure
and stability of ecological networks.

© 2018 British Ornithologists’ Union
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FUTURE RESEARCH DIRECTIONS

Combining experimental and long-term
observational approaches to decipher the
role of avian top predators in terrestrial
ecosystems

Top predators occur naturally at low densities and are
often endangered and elusive. Recent advances in
camera trap technology and animal-borne sensors
(Wilmers et al. 2015, Caravaggi et al. 2017) have
opened new research opportunities to overcome these
logistical difficulties and answer questions related to
the ecological role of top predators in terrestrial
ecosystems. For instance, the fine-scale spatial
response of subordinate predators to the presence of a
top predator has been documented among guilds of
mammalian carnivores (Swanson et al. 2014, Ramesh
et al. 2017). Integrating GPS telemetry data of large
raptor movements and camera trap surveys of sym-
patric mammalian mesopredators would help to deter-
mine how the latter respond to spatial variation in
predation risk, controlling for landscape heterogeneity
(see Davies et al. 2016 for a similar approach with

mammalian top predators) and predator foraging
mode (Preisser et al. 2007).

Recent research showed that experimental manipula-
tions of fear in free-living mammalian mesopredators
using month-long playbacks of intraguild top predator
vocalizations caused cascading effects, reducing meso-
predator foraging to the benefit of the mesopredator’s
prey, which in turn positively influenced multiple
trophic levels in an intertidal food web (Suraci et al.
2016). Similar experimental manipulations using visual
(e.g. taxidermied raptors with small servo motors to
move their heads, see Billings et al. 2017) or acoustic
(call playbacks) cues of different large raptor species
(Billings et al. 2017) would make it possible to deter-
mine whether mesopredators (mammalian mesopreda-
tors and corvids) alter their foraging behaviour in the
presence of avian top predators, show reduced foraging
time and success, or change habitat use and how this
reverberates throughout food webs in diverse ecosystems
varying in their level of anthropization.

Additionally, accounting for variation in ecosystem
productivity (Pasanen-Mortensen et al. 2017) would
allow better capture of the dynamics of response vari-
ability to the presence of avian top predators. In

Box 1
Case study: anthropogenic impact, small mammals and changing predator communities in European agro-systems
Top predators are particularly vulnerable to anthropogenic disturbance due to their slow life histories (low reproductive
rates) and low population density. In addition, they often are a source of human–wildlife conflict. This results in a
worldwide population decline of top predators in both marine and terrestrial ecosystems. The loss of top-order predators
has been identified as a key factor contributing to continuing species extinctions and the global biodiversity-loss crisis
(Johnson et al. 2007, Estes et al. 2011).

Previous studies focusing on trophic cascades in terrestrial ecosystems have often been carried out in boreal ecosystems
with limited land-use change (Ripple & Beschta 2012; Lyly et al. 2015, 2016). As the impact of predators on prey
populations depends to a large extent on the productivity of the landscape, which determines the growth rates and
abundance of prey populations (Elmhagen et al. 2010), human management regimes and human-mediated food
subsidies may, in particular, be expected to interact with the impact of mammalian or avian predators on prey
populations (Gagn�e et al. 2016). Therefore, the functional role of predators could be modified under varying levels of
resource conditions. The interactive effects between human-induced productivity and ‘natural’ productivity deserve
attention because these may be key factors determining the impact of predators on ecosystem processes in
anthropogenic landscapes.

Further research is therefore urgently needed in European agro-ecosystems, which cover 56% of total ecosystems in
Europe, as extensive human influence on vegetation and predator communities in these systems may disrupt predator–
prey interactions, which has important consequences in terms of conserving ecosystem structure and function. For
instance, recent research found large-scale dampening of population cycles in keystone small rodents (Cornulier et al.
2013). The causes of this change and its cascading effects on food webs remain poorly understood. Thus, understanding
how populations of avian top predators may limit populations of specialist and generalist mesopredators in these
ecosystems and how this could reverberate throughout the community to impact lower trophic levels appears to be a
clear global priority (see Fig. 1).
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particular, further research is needed to understand how
food subsidies to small herbivores (through the effects
of nitrogen fertilization on primary productivity) could
lead to a reduced potential for top-down density- or
behaviourally mediated effects of an avian top predator
on sympatric mesopredators and prey population size in
anthropogenic landscapes (Muhly et al. 2013).

These effects of food subsidies may be particularly
relevant for systems with low productivity because the
top-down potential of predators seems to be especially
limited in highly productive systems (Melis et al. 2009).
Using the combined empirical and experimental
approaches previously described, researchers could take
better advantage of the spatial heterogeneity in primary
productivity observed in agro-systems and created by
variation in local levels of nitrogen fertilization to inves-
tigate the relative importance of bottom-up vs. top-
down effects in four-level trophic chains (Box 1; Fig. 1).

Taking advantage of natural raptor
recolonization or reintroduction programmes
in Europe to assess the effect of large raptor
return on ecosystems

The Golden Eagle and the Eagle-Owl, two top predators
once eliminated from large parts of their European dis-
tribution range, have been recolonizing parts of their
former range, including territories located at low alti-
tudes in anthropogenic landscapes. Despite their large
trophic spectrum and evidence that mammalian meso-
predators are regular prey of both species (Lourenc�o
et al. 2011), research has until now only focused on the
effects of Eagle-Owl presence on intraguild avian preda-
tors. This natural recolonization process could be used
as a before-after-control-impact (BACI) experimental
design integrating methodological aspects described in
the previous section (monitoring mesopredator spatial

Figure 1. Diagram of hypothesized four-level trophic interactions in European intensive agro-ecosystems highlighting the potential
role of recolonizing avian top predators and the anthropic factors affecting the structure of this ecological network (signs in parenth-
eses describe European population trends or levels of resource use).

© 2018 British Ornithologists’ Union

What is the functional role of top avian predators? 5



use at the range edge of expanding Eagle-Owl and
Golden Eagle populations or taking advantage of Golden
Eagle reintroductions in some countries) to better under-
stand how this top predator impacts mesopredator pop-
ulations and how their return affects lower trophic
levels (birds, small herbivores and primary productivity).

Developing research on the role of top avian
predators in tropical ecological networks

Studies are being carried out on the ecology of Ver-
reaux’s Eagle Aquila verreauxii, Martial Eagle Polemaetus
bellicosus and African Crowned Eagle Stephanoaetus coro-
natus in sub-Saharan Africa (McPherson et al. 2016,
Murgatroyd et al. 2016, van Eeden et al. 2017) and the
Harpy Eagle Harpia harpyja in South and Central Amer-
ica (Miranda 2015, Miranda et al. 2018). Further
research is needed on the role of these large eagles on
mesopredator habitat use and population dynamics in
diverse ecosystems.

Retaliatory poaching linked to cases of poultry depre-
dation is still an important cause of mortality in these
species, particularly for the Vulnerable Martial Eagle
(Birdlife International, 2017). Increased understanding
of the potential benefits associated with the presence of
these large eagles in terms of pest species control in
tropical countries (monkey and medium-sized carnivore
species) and communicating the results to local commu-
nities would potentially benefit the conservation of these
species.

Towards a valuation of the regulatory
services provided by top avian predators?

Most of the studies investigating the functional role of
raptors have focused on rodent control and the potential
benefits to society associated with a reduction in agricul-
ture damage or the scavenging services provided by vul-
tures (Paz et al. 2013, Morales-Reyes et al. 2015;
Don�azar et al. 2016). However, a broader understanding
of the ecological functions of avian top predators, partic-
ularly of the trophic linkages between large raptors,
mesopredators and game species and how they can be
valued as regulatory services by the hunting sector,
would bring potential conservation benefits to this guild.

Hunting has an important socio-economic role in the
UK and several Southern European countries; for
instance, income generated by Red-legged Partridge
Alectoris rufa hunting has been roughly estimated at
more than €1000 million per year in Spain (Garrido
2012, Arroyo et al. 2017). However, total expenses
linked to management practices in hunting estates can
reach €66 273 per km2 in the most intensively managed
estates, where one of the main costs is the salary of
gamekeepers who typically undertake intensive predator

control (D�ıaz-Fern�andez et al. 2012). This practice has
seemingly limited effectiveness on increasing Red-legged
Partridge post-breeding abundance in comparison with
other estate aspects such as provision or supplementary
food or habitat (D�ıaz-Fern�andez et al. 2013), although it
apparently has positive effects on other farmland birds,
such as the Little Bustard Tetrax tetrax (Estrada et al.
2015). However, the influence of intraguild predation
on the effectiveness of predator control in these rich
predator communities has never been assessed. In partic-
ular, the potential impact of large predator presence on
the effect of Red Fox and corvids on small game species
is a research priority given the economic costs associated
with predator control and the potential benefits in terms
of conservation arising from changes in gamekeeper atti-
tudes towards raptors (Red Fox and Eurasian Magpie
Pica pica are the two main species targeted by predator
control in Spain and also regular prey of several species
of large eagles and of the Eagle-Owl). Similarly, in a
recent study, Gilbert et al. (2016) revealed that recolo-
nizing Cougars Puma concolor could reduce deer densi-
ties and deer–vehicle collisions by 22% in the Eastern
United States, preventing 21 400 human injuries, 155
fatalities and $2.13 billion in avoided costs within
30 years of establishment.

More studies using the same approach as Gilbert
et al. (2016), coupling mesopredator population models
to socio-economic valuation in order to assess the
ecosystem services provided by large raptors through
reduction in impact of mesopredators (through either
direct trophic cascades or behaviourally mediated
effects) on decreasing and economically important game
species, would be extremely valuable.

We would like to thank D. McCafferty and B. Arroyo for their
thoughtful comments on an early version of the manuscript.
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