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1. Introduction

In many projects the study window is too large to extensively map the intensity of the point
process of interest since observation methods may be available at a much smaller scale only. That is
for instance the case when studying the spatial repartition of a bird species at a national scale, while
the observations are made in windows of few hectares. The intensity must then be estimated from
data issued out of samples spread in the study window, and hence, from a partial realization of the
point process in this window.

In the following, we consider a stationary and isotropic point process, @, which we assume to be
driven by a stationary random field, U. We define the local intensity of @ by its intensity conditional to
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the random field U. We denote it 1 (x|U). A simple example of such a process @ is the Thomas process
which is a Poisson cluster process where the cluster centers (parents) are assumed to be Poisson and
the offsprings are normally distributed around the parent point. This process is stationary and the
local intensity corresponds to the intensity of the inhomogeneous Poisson process of offsprings, i.e. the
conditional intensity given the parent process. We will refer to the estimation of the local intensity
when we want to the know it at point locations lying in the observation window of the point process,
and to its prediction when point locations are outside the observation window.

Usually, when estimating a non-constant intensity, we observe the full point pattern within a win-
dow and we want to know its local changes over a given mesh. This issue has been addressed in sev-
eral ways: kernel smoothing, see Silverman (1986) and Guan (2008) in presence of covariates, and van
Lieshout (2012) for a general class of weight function estimators that encompasses both kernel and
tessellation based estimators; or parametric methods; see for instance (Illian et al., 2008) for a review.
A recurrent and remaining question in these approaches is which bandwidth/mesh should we use?
This has been addressed by using cross-validation (Hdrdle, 1991) or double kernel (Devroye, 1989).

In contrast to the previous methods which look at the intensity changes inside the observation
window, our main interest lies in predicting the intensity outside the observation window, all the
more when it is not connected as it frequently happens when sampling in plant ecology. To predict the
intensity we could use (Tscheschel and Stoyan, 2006)’s reconstruction method based on the first- and
second-order characteristics of the point process. Once the empirical point pattern predicted within
a given window, one can get the intensity by kernel smoothing. As it is a simulation-based method,
it requires long computation times, especially when the prediction window is large and/or the point
process is complex. As alternative method, few authors model the point pattern by a point process
with the intensity driven by a stationary random field. In Diggle and Ribeiro (2007) and Diggle et al.
(2013), the approach is heavily based on a complete modeling and considers a log-Gaussian model.
The parameter estimation, the intensity estimation and its prediction outside the observation window
are obtained using a Bayesian framework. The method developed in Monestiez et al. (2006) and Bellier
et al. (2013) is close to classical geostatistics. Basically, it consists of counting the number of points
within some grid cells, computing the related empirical variogram and theoretically relating it to the
one obtained from the random field driving the intensity. Then, the variogram is fitted and kriging is
used to predict the intensity. Its advantage is that the estimation is only based on its first- and second-
order moments so that the model does not need to be fully specified. While this approach requires
less hypotheses, the model remains constrained within the class of Cox processes. Moreover, the mesh
size is arbitrary defined. van Lieshout and Baddeley (2001) developed, for a wider class of parametric
models, a Bayesian approach for extrapolating and interpolating clustered point patterns.

Here, we propose to interpolate the local intensity by an adapted kriging, where the kriging weights
depend on the local structure of the point process. Hence, our method uses all the data to locally
predict at a given point, which it is not the case of most of kernel methods. It also uses the information
at a fine scale of the point process, which it is not the case in geostatistical approaches. Furthermore, it
does not require a specific model but only (an estimation of) the first- and second-order characteristics
of the point process.

In Section 2 we define the regularized process as a random field of point counts on grid cells and
we link up the mean and variogram of this random field to the intensity and pair correlation function
of the point process. The kriging weights, the related interpolator and its properties are presented
in Section 3 as well as the optimal mesh of the interpolation grid. In Section 4 we use our kriging
interpolator to estimate and predict the intensity of Montagu’s Harriers’ nest locations in a region of
France. In Section 5, we discuss the influence of the mesh and the rate and shape of unobserved areas
on the statistical properties of our kriging interpolator from numerical results.

2. Linking up characteristics of two theories

2.1. About geostatistics

For any real valued random field Z(x), x € R?, the first-order characteristic is the mean
value function: E[Z(x)] = m(x) and the second-order characteristics are classically described in
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geostatistics (Matheron, 1962, 1963) by the (semi)-variogram, i.e. the mean squared difference at lag
riy(r) = 1E[(Z(x) — Z(x + r))*]. For a stationary and isotropic random field, we have
E[Z(x)] = m,
y(r) =0 — Cov(Z(x), Z(x + h)), (1

where o2 is the field variance and Cov(Z(x), Z(x + r)) is the auto-covariance of the random field.

We can interpolate the value Z(x,) at the unsampled location x, by using the best linear unbiased
predictor, so-called kriging interpolator: Z(x,) = 'z, wherez = {Z(x;)};_;__, is the observation vec-
tor of the random field and w is the n-vector of weights. In the case of ordinary kriging (Cressie, 1993),
which will be of interest here since the mean value of the random field will be unknown, we have
1-17c7'c,

1c1
where C = {Cov(Z(x),Z(x))}

w=C1C+ c 1, (2)

=1 is the covariance matrix between the observations, C, =

n-vector of 1 (see e.g. Cressie, 1993, Wackernagel, 2003).

2.2. About point processes

Let @ be a stationary and isotropic point process defined in R? and B a Borel set centered at 0.
Following the notations in Chiu et al. (2013), a realization of @ within a window S,; will be denoted
by @s,,. and the random counting measure for a Borel set B by @ (B).

The first- and second-order characteristics of @ are described through its intensity A and the
Ripley’s K-function or the pair correlation function g:

5 — E [ (Sobs)] (3)
V(Sobs)
K*(r) = %IE[qﬁ(b(O, r)) — 1|0 € @], (4)
_ 1 0K*(r)
gr) = [ ——— (5)

where v(Syps) is the area of Sy, and b(0, r) is the disc centered at 0, with radius r. The intensity X is
thus the expected number of points per unit area, AK*(r) is the mean number of points in a circle of
radius r centered at a typical point of the point process, whereas g (r) measures how K* changes with
r. See for instance (Chiu et al., 2013) for a review about the theory of point processes.

Lemma 2.1. Let @ be a point process with intensity A and B, D two Borel sets. Then,

1. If v(B), v(D) — O, then P[{®(B) = 1} N{®(D) = 1}] = 2w(BND) + A% [, g(x —y) dxdy +
o (v(BUD)),

2. E[®%(B)] = Av(B) + A% [, ,8(x — y) dxdy,

3. Var(®(B)) = Av(B) + A% [, , (g(x —y) — 1) dxdy,

4. If BN D = ¢, then Cov (®(B), ®(D)) = A2 [, , (g(x —y) — 1) dxdy.

The proof of 1. is given in Appendix A. Decompositions 2.-4. can be found in Chiu et al. (2013).
2.3. Linking up

In our context, data are defined as informative point locations (the realization of the point process
@) while the geostatistical calculations (kriging) need to be carried out over the values of a random
field Z observed at several sampling locations, grid cell centers for example. Thus, we must regularize
our process over a compact set (Zhang et al., 2014). This consists in defining Z(x) by the count of
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the point process over the grid cell B centered at x € R? i.e. Z(x) = ®(B @ x). Such a random
field is of interest in our case as we want to estimate a non-constant intensity, classically defined by

. @ (Bdx)
llmu(B)—)OEI: »(B) ]

From the first- and second-order moments defined in the previous sections, we can link up the
characteristics of the point process @ to the ones of the random field of point counts Z. Because of
the stationary assumption it can also be related to the auto-covariance function (Eq. (1)), thus in the
following we shall consider the latter.

Proposition 2.2. For the count random field defined by & (B & x), where B is a given Borel set, we have:

1. m = Av(B),
2. For B and D two regularization blocks,B= D +r,Bp = B\ D,Dg =D\ B,

2y/(1) = % (v(Bo) + V(Dp)) + A2 (/ g(x — ) dxdy
B,

DX Bp

+/ g(x—y)dxdy—Z/ g(x—y)dxdy).
DgxDp BpxDp

3. If B=D +r, then for v(B) = v(D) — 0

Cov (@(B), #(D)) ~ wv(B) (Tp—p) + 1v(B) (g () — 1)). (6)

The proof of Proposition 2.2 is straightforward from Lemma 2.1 and from the approximation
P[{®(B) = 1} N {® (D) = 1}] &~ A2v(B)v(D)g(r) (see Appendix B).

3. Adapted kriging for point processes

In what follows, we consider that the stationary and isotropic point process, @, is driven by a
stationary random field, U. We want to interpolate the local intensity of @, A(x|U), x € S C R?, i.e. its
intensity conditional to the random field U, from its realization within an observation window S,p;.
Hence, we use the relation between point processes and geostatistics (Section 2.3) and approximate
the point process by the counting process within a grid of elementary cell B.

For sake of clarity, in the following we denote by S the region of interest so that S;,,ss define the
complementary of S,;; within S. We consider a regular grid superimposed on S with a square-mesh.
We denote by B an elementary square centered at 0, B; = x; ® B the elementary square centered at x;
such that B; N B; = ¥, and n (resp. n,ps) the number of grid cell centers lying in S (resp. Sops).

3.1. Defining the interpolator

According to the classical geostatistical method defined in Section 2, the kriging interpolator of the
local intensity at x, € S, A(x,|U), should be written as

1 (AxU), s Ay [U)),

for some well-chosen kriging weights  where x;,i = 1, ..., nys correspond to data sample locations,
i.e. here to the cell centers of S,ps. Note that in our case we cannot observe the local intensity at x;, thus
we can estimate it by ‘iig"}). Furthermore because of the cell-point relation, we cannot have an exact
interpolation of the local intensity.

Proposition 3.1. Given the elementary square B, the interpolator at x, defined by

~ ®(B:
Tooly = 3 28 7)

Xi€Sobs v (B)
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where jt = (ft1, ..., finy,) = C'Co + 10°C 16 19 s the best linear unbiased predictor (BLUP) of

1'c—11
‘f}((%;) and the asymptotically BLUP of A(x,|U).
The weights depend on

e the covariance matrix C = Av(B)I + A?v?(B)(G — 1),
where G = {‘gqﬂj}l,‘j:1 o withg; = V%(m J3,5 8 Xi—x;+u—v) du dv, and I is the nops X nops-identity
matrix,

e the covariance vector C, = Av(B)I,, + A2v2(B)(G, — 1),
where Gy = {gio}i—1,.. Hops? and I, is the nops-vector with zero values and one term equals to one where
X, = X; (which only happens in estimation).

S

When the distance between x, and x;, for all i, is larger than the range of interaction, the predicted
value tends to A if x, & Spps and the estimated value tends to 0 if x, € Syps.

P (Bo)

Proof. At the scale of B, the kriging weights such that 3:()(0|U) is a BLUP of ~ B)

ordinary kriging equations (Cressie, 1993; Chilés and Delfiner, 2012).
At a finer scale we have that E [Q)(B@") ] tends to A(x|U) when v(B) tends to 0 (as A(x|U) is assumed

v(B)
to be continuous). Thus we propose to interpolate A(x,|U) by using ’):(xo|U) = inesubs ui%,

with the constraint >’ 1; = 1. Minimizing the error variance Var a(xow) — A(X,|U)) under this

constraint and using Eq. (6) lead to the following kriging weights:

1—vB)1'Cc7'¢, 11
17c11

are given by the

n= v(B)C_1ED +

’

where C, = {(COV(‘D(Bi), A(X0|U)>}

i=1,...,Npps
To get (Cov(@ (By), A(xo | U)) note that, for A4, (x|U) denoting the local intensity of the point process
@ given its realization in B:

E [ (Bo)|®5, ] = / b, (X|U) X = g, (% U)V(B) + 0(v(B))
Bo

and )\.(pBi *,|U) = E I:)\.(psobs (xo|U)|<1>B,.]. Thus, we have

o for x; # x,,
E[®(B,)®(B)] = E[@(B)E [P (B,)|Ps,]]

E [ (B)v (B, (x,1U)]

E[@BIBE 1o, (6lU)] 193]
VBE[E [ @By, *olU)]195]
VBIE [ @ (B)ag,, (lU)]

which leads to E[@(B)A(x,|U)] = ﬁ]E[Q>(BO)<D(B,4)] as in our case the local intensity is

conditional to the realization of the process @ in Sps.
o forx; = x,,
E[®%(B,)] = E[E[®%(B,)|Ps,, || = E [P (B)E [@(Bo)|Ps,y, |]
E[®(Bo)v(B)A(%,|U)]
= V(B)E[@(B,)A(x,|U)]

which leads to E [® (B,)A(x,|U)] = ﬁ@ [®%(B,)].
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Consequently, E,, = C, and we get

v(B)
1-17c7I¢
_ -1 0 -1
w=00t e
Interpolating @ (B,)/v(B) or A(x,|U) leads to the same kriging weights.
Finally,
@ (By) @ (B,)
E[A(x|U)| =E i =E — A(x,|U
(R l0)] [Xg: K } [ G| T Mol

shows that X(XO|U ) is an asymptotically unbiased predictor of A(x,|U). O

3.2. Properties of the interpolator

In order to develop the variance of the kriging interpolator, we use the following Neumann series
(see e.g. Petersen and Pedersen, 2012) to invert the covariance matrix C, which holds when Av(B)
tends to O:

1
-1 __
C == ®) (I+2v(B),], (8)

where a generic element of the matrix J, is given by

hlijl = Z( DA (g0 x,) — 1) (80,0 ) — 1)

/k H(g(xlm,xzmH) -1 dx,l dx,k_l.

Sobs m=1
Proposition 3.2. When Lv(B) tends to 0, the variance of X(xolu ) is

Var (A(x|U)) = vi + 2021 J; 1y, + 223 0(B)LL J1(G, — 1)
+ 120 (B)(Go — DTG, — 1) + 1M (B) (G, — DTG, — 1) ,
1- [1 FawB1 T, + 2B (Go — 1) + 2202 (B)17,. (G, — 1)]

" o) 4 2(B)17);1 ©
In estimation, i.e. when x, € Syps, we get the following approximation,
A
Var (A(x0|U) ok (10)
In prediction, i.e. when x, & Sops, the variance reduces to
Var (A(x%|U)) = A2 B)(Go — 1T (Go — 1) + A (B)(Go — DTJ5.(G, — 1)
1- [Av(B)lT(GO 1) 4+ 2202 BTG, — 1)]2
+ . (11)

V(S;fbs) + UZ(B)IT])\‘I
Proof. From e.g. Cressie (1993), the variance of the predictor is given by

& (B; 1 ~
Var (/):(XO|U)) = Var( Z i UEB))> _ UZ(B)MTC 9

Xi€Sobs
1—@17c71¢,)?
17c-11

1
= clc'c
- { +
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e When estimating the local intensity, i.e. for x, lying in the observation window, we have
C, = M(B)Iy, + A*V*(B)(G, — 1).
Thus, from Eq. (8):
clcic, = )Lv(B)[l + A0(B) (1 (o, Xo) + 21T (G, — 1)
2202 (B) (I J1(Go — 1) + (Go — 1D'(G, — 1)) 2°V*(B)(G, — 1'J5.(G, — 1)],

where J(y,2) = Y po (=Dt fsl»;l;(g(y,xl1 — D12 € s X)) — DERY 0 2) —
1) dx,l dx,k_l,

17clc, = 1+ ,\u(B)[fMXG +17G, — 1) + A B1,(Gy — 1)],

and
e = [n + BT 1] VGats) | 41 4
Iy (B) obs A v Z(B) AL
Then, if v(B) is ver small G varies in —%- and 15 a’clc)? in Thus, we get Eq. (10)
y 2() 0] Zanett P T et Eq. (10).

e When predicting the local intensity, i.e. for x, outside the observation window, we have C, =
22v2(B)(G, — 1). Thus, from

G, CT'C =2V’ B)(Go — DG — 1) + AW (B) (G, — D')1(G, — 1)
and

17¢71¢, = w®B17 (G, — 1) + 1202 B)17)5.(G, — 1)
we getEq.(11). O

3.3. Defining an optimal mesh size
The Integrated Mean Squared Error of X(X|U ) is defined as
~ 2
IMSE (A(x|U)) = / [(,\(xw) — E[A|U)])* + Var @(X|U))] dx
s

When estimating the local intensity, this leads to the following approximation:

Vv(B) AV (Sobs
IMSE (R(x|U)) ~ 12 5 IVAGIU)|? dx + ‘;((B;’).

obs

(12)

We propose to find the optimal mesh of the estimation grid by minimizing IMSE ():(X|U)) (see
Appendix C), and we get:

1210 (Sops
Vot (B) = \/f VOus) (13)
Sobs

VAKXIU)|? dx

Note that because the optimal mesh depends on the inverse of squared L,-norm of the gradient of
the local intensity, it decreases for clustered point patterns. Conversely, it increases for regular point
patterns.

In practice the optimal mesh can be approximated by estimating the gradient of the intensity over
a fine grid (see Appendix D).

When predicting the local intensity, the smaller the mesh, the better. Computation time is the only
limit.

Please cite this article in press as: Gabriel, E., et al., Adapted kriging to predict the intensity of partially observed point process
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LTER Zone Atelier ‘Plaine & Val de Sévre’

France

Deux-Sévres Department

el

N
o

Fig. 1. Montagu’s Harriers nest locations in the Zone Atelier “Plaine & Val de Sévre”.
4. Real case study
In this section we estimate and predict the intensity of Montagu’s Harriers’ nest locations in the
Zone Atelier “Plaine & Val de Sévre”! (Fig. 1), a NATURA2000 site in France of 450 km?, designated for
its remarkable diversity of bird species. Dots in Fig. 1 represent the exhaustive collection of Montagu’s

Harriers’ nest locations. The area in the center of the Zone Atelier delineates the administrative
boundaries of the commune Saint-Martin-de-Bernegoue, which will be used for prediction.

4.1. Estimation of the pair correlation function

The pair correlation is estimated as defined in Stoyan and Stoyan (1994):

+
- 1 ky (r — 11§ — ¢1D)
En=5—3 >
Tr 564550173 ceds,, prop (Sobs N Sobs,éfg)

where kj, is the Epanechnikov kernel with bandwidth h, the optimal Stoyan’s bandwidth equals to
0.15// @ (Sobs) /v (Sops) and prop (Sobs N Sobs,g_;) is the proportion of translations of (&, ¢) which have
both £ and ¢ inside S,ps. Fig. 2(a) shows the pair correlation function estimated from either all data
point locations (solid line) or only the ones outside the boundaries of Saint-Martin-de-Bernegoue
(dashed line). These estimates are characteristic of a Thomas cluster process with an infinite range
of correlation, see Illian et al. (2008).

4.2. Intensity estimation

For our kriging estimator, the optimal mesh is obtained by minimizing the IMSE. Usual
nonparametric estimation methods also require to preliminary set the smoothing parameter and
this parameter is chosen as an optimal value minimizing a specific criterion (typically mean square
error, integrated bias, asymptotic mean square error). In our case, we have an explicit formula of the
optimal mesh (Eq. (13)), which depends on the unknown terms A and A (x|U). IfA= D (Sops) /v (Sobs)
appears to be a natural candidate to estimate A, the challenging goal is to estimate fsobs I VA(x|U)|? dx.
Based on simulation experiments (Appendix D), we consider a Gaussian kernel (Silverman, 1986),
with a bandwidth minimizing the mean-square error criterion defined by Diggle (1985), to get a good

1 http://www.za.plainevalsevre.cnrs.fr/.
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b

-3.6e-07[ 0 TNl 6.9e-07 0 [ 85e-05

Fig. 2. (a) Estimation of the pair correlation function from all points (solid line) and without those lying in Saint-Martin-de
Bernegoue (dashed line). Estimation of Montagu’s Harriers nest locations using our kriging interpolator on the optimal grid (b)
and using a Gaussian kernel on a 128 x 128 grid (d). (c) Difference between our estimator and the Gaussian kernel smoothing
at the same resolution: dark gray (resp. blue) indicates higher values of the Gaussian kernel (resp. our kriging) estimates. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

approximation of the gradient of A(x|U) on a 200 x 200 grid. This methodology applied to the real
dataset leads to a value of v, (B) equals to 23.19 hectares, which corresponds to a grid of 64 x 53
cells.

Fig. 2(b) shows the kriging estimate on the optimal grid. Fig. 2(d) represents an estimate obtained
by a Gaussian kernel, with a bandwidth selected as previously mentioned, on a 128 x 128 grid
(default of the spatstat function ‘density.ppp’, Baddeley and Turner, 2005). Fig. 2(c) illustrates
the difference between our estimation and the one obtained by Gaussian kernel smoothing at the same
grid resolution. Our kriging interpolator gives higher values of the local intensity (in blue in Fig. 2(c))
close to aggregated observation points than the kernel estimator, while the maximum value may be
higher for the later. This illustrates that our method may be particularly relevant for point patterns
strongly aggregated at a small scale.

4.3. Intensity prediction

In order to apply our kriging predictor to the real dataset, we consider an unobserved window Sy;;ps
defined by the administrative boundaries of the commune Saint-Martin-de-Bernegoue in the center
of the ‘Zone Atelier’ (Fig. 1). Thus, we remove the points in this area (red dots in Fig. 3) and use the
remaining nest locations (blue dots in Fig. 3) to predict the local intensity within S,,05;. We consider
a grid of size 100 x 100 over S to make the prediction. The estimated pair correlation function is
plotted in Fig. 2(a) (dashed line). The result, zoomed in Fig. 3, shows that the kriging predictor is able
to reproduce the second-order structure of the point process. In particular, it reproduces clusters as
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Fig. 3. Prediction within the commune of Saint-Martin-de-Bernegoue (data location is in blue; the red ones are removed for
the prediction). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

soon as there are points close enough to the boundary of the unobserved area. This will be further
illustrated and discussed in the next section. Note that at distances greater than the range of the pair
correlation function, the method can only provide a constant intensity estimate.

5. Illustrative simulation experiments

5.1. Objectives

Now, we focus on the kriging predictor and explore its accuracy through simulation experiments,
varying rate and shape of the observation window Sy,. To measure the quality of prediction, we
compute the mean bias (MB) and the mean square error of prediction (MSEP):

1 1 Tsim
MB=— % — % ((xIU) = k(xlU)).
Nops xeds,, Nsim k=1
1 1 Nsim 3
MSEP = — %~ — %" ((xlU) — Mx|U))”,

Mobs sey Msim 13

where A, and Xk correspond respectively to the intensity and its predictor on the kth simulation
and ngp, is the number of simulations. We also compute the coefficient of determination R? of the
regression between the predicted values of the local intensity and the theoretical ones.

5.2. Experimental design

Throughout our experimental study, in order to simplify the analysis of the two parameters of
interest (rate and shape of Syps), we decide to simulate all point patterns from a single spatial point
process model. We consider in the sequel a Thomas process, for which we have explicit formulas of
the intensity, pair correlation function and others characteristics (see Illian et al., 2008, p. 377):

_£2
Ax|U) = Z #exp(—u>, forallx € S, (14)

202
§€¢50b5

1 r2
ry=1 e ——— ), forr>0.
£ + drko? xp< 402> =
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83 %
66 %

50 % '

33%

Fig. 4. Windows of interest with S,ps (resp. Sunops) the union of white (resp. gray) bands.

Such a Cox model is of interest as it models spatial aggregation, a condition often observed in practical
situations of intensity prediction. We simulate ng;,, = 1000 patterns of a Thomas process in the unit
square with parameters:

e k = 10, the intensity of parent points from a homogeneous Poisson point process,

e /.t = 50, the mean number of children points around each parent point from a Poisson distribution,

e 0 = 0.05, the standard deviation of the Gaussian density distribution centered at each parent
point.

Several windows of interest S;, with i = 1,..., 24, are considered (Fig. 4), corresponding to
different observation rates (83%, 66%, 50%, 33% and 17%). The unobserved windows S,;,,»s are defined
by the union of bands, with varying width (in gray in Fig. 4).

Because the weights in our kriging interpolator depend on the pair correlation function, in our
experiment we compare results arising from the theoretical pair correlation function, and from its
estimate defined in Section 4.1.In order to estimate the pair correlation function from similar numbers
of points in each window S;, we first simulated point patterns within a larger window (the initial one
extended on the right side), so that the area of observation zones equals to one. The pair correlation
function is then estimated from this first pattern and the prediction is made on its restriction to the
initial unit square.

5.3. Results

The mean bias and the mean square error of prediction are presented in Fig. 5, with theoretical
values of the pair correlation function (solid lines) or an estimate (dotted line). It shows that the mean
bias has no effect on the MSEP. With theoretical values of the pair correlation function, the mean
bias is close to zero whatever the width of the bands defining S,,,5s, Which numerically reveals the
unbiasedness statistical property of our predictor. When the pair correlation function is estimated, Ay
is under-estimated and the discrepancy is higher when the observation rate decreases than when the
width of the unobserved bands increases.

At a given observation rate, the MSEP increases when the width of the unobserved bands increases.
Indeed, the geometry of our windows of interest implies that wider the unobserved bands, less nu-
merous they are. Consequently, for some simulated patterns, cluster points can completely fall within
an unobserved band, what damages the quality of prediction. At a given value of the unobserved band,
we obviously see a slight increase of the MSEP when the observation rate decreases.
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Fig. 5. Mean Bias (left) and Mean Square Error of Prediction (right) of our kriging predictor related to the width of the
unobserved bands, and to the observation rates: 83% in cyan, 66% in blue, 50% in green, 33% in red and 17% in black. The
lines correspond to a linear approximation of the MSEP values when g is known (solid lines) or estimated (dotted lines). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We first illustrate the influence of the estimation of the pair correlation function onto the accuracy

of prediction on a single simulation. The simulated pattern, the associated theoretical intensity and the
observation window, with a rate of 50% of observed areas, are represented in Fig. 6(a)-(c) respectively.
The theoretical (dotted line) and estimated (solid line) pair correlation function are given in Fig. 6(d).
Fig. 6(e) and (f) illustrate the theoretical local intensity in S,;; and the prediction in Sy;0ps 0N a 96 x 96
grid, using the true (e) and the estimated (f) pair correlation function. In the first case, the prediction
is relatively smooth and gives accurate results. In the second case, the prediction is more noisy, but
recover the same blocks with high intensity values. In both cases, the method correctly predict the
clusters when there are observations close to the unobserved bands. That is the case for all clusters
located at the right hand side of the vertical line x = 0.25. When the full cluster falls in the unobserved
band, as the ones located at the left hand side of the vertical line x = 0.25 the method fails in predicting
the cluster.
We plotted (Fig. 7) the boxplot of the coefficient of determination resulting from 100 simple linear
regressions between the predicted values of the local intensity and the theoretical ones, for different
grid size (24 x 24, 48 x 48 and 96 x 96), when the pair correlation function is estimated (Fig. 7(b))
or not (Fig. 7(a)). These results are related to an observation rate of 50%, according to the window
configuration highlighted Fig. 4. We obviously see that the goodness of prediction increases when the
grid resolution increases and when the pair correlation function is known. We considered a 96 x 96
grid as it is a trade off between computation times and a small mesh, allowing a good description
of the intensity variations due to clusters. We obtained, in the worst case where the pair correlation
function is estimated, that the coefficient of determination R? is around 0.8 (median).

6. Discussion

Our kriging method introduced to estimate and/or predict the local intensity of a stationary and
isotropic point process has a large number of advantages, particularly in prediction. Taking into
account the spatial structure of the point pattern allows to perform the intensity estimation for
point processes highly aggregated at fine scale. In the prediction framework, our kriging method
is innovative for the interpolation of the local intensity and presents good statistical properties
(unbiasedness, low variance...) when the pair correlation function is known. When it is estimated,
the quality of our interpolator is slightly reduced but our results can be improved by better taking
into account the double estimation of the pair correlation function and the local intensity on the same
pattern.

This prediction method is less time consuming than the reconstruction methods and appears a
promising way in prediction of intensity of a spatial point pattern. Note that existing prediction
methods are constrained within a class of point processes (van Lieshout and Baddeley, 2001, in
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Fig.6. (a)Simulated pattern from a Thomas process (parent points in red and children points in black). (b) Theoretical intensity
from the simulated pattern. (c) Observed window (light gray) and unobserved window (red) with an observation rate of 50%. (d)
Theoretical (dotted line) and estimated (solid line) pair correlation function g. (e) and (f) Theoretical intensity in the observed
window and predicted local intensity in the unobserved window obtained with the true pair correlation function (e) and an
estimate (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

a'° b 1o
o) L B B | oo I
== — ' —
: : ; i
os{ — N e :
i - .
: .
L .
0.4 ' 0.4 .
02 02+
00 00
2424 48 x48 96 x 96 2424 48 x48 96 x 96

Grid size

Grid size

Fig.7. R? inlinear regressions of the predicted and theoretical values of the local intensity, associated with different grid size,
when the predictions are based on the theoretical pair correlation function (a) or an estimate (b).

particular Cox processes Monestiez et al., 2006, Diggle and Ribeiro, 2007, Bellier et al., 2013, Diggle
et al., 2013), making any comparison with our method very restrictive relatively to its broad scope of
applications. That is for instance the case of any point process obtained by a weak dependent process
(e.g. Thomas, Markov) with a parameter driven by a stationary random field at a larger scale (e.g. Cox),
but not only.

Relaxing the stationary assumption implies to make further assumptions. The formalism should
be quite similar to the one of this paper, but with some confounding effects as the ones observed
when using the same point pattern to estimate both a spatially varying intensity and second-order
characteristics (Diggle et al., 2007; Gabriel, 2014). For instance, if we consider a non stationary Cox
process, we cannot disentangle the first-order non-stationarity to the second-order non-stationarity.
One could thus allocate the effects at different scales.
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In our simulations and application, we used the R function solve, based on the LU factorization, to
compute the inverse of the covariance matrix C. This matrix is of dimension the square of the number
of cells of the grid superimposed on the observation window. Thus, it can quickly become heavy to
inverse. In such cases, estimating the matrix C~! using Eq. (8) would be somewhat cumbersome. Thus,
we propose instead to inverse the covariance matrix numerically. Several approximations could be
used, depending mainly on the width of B with respect to A and the curvature of the pair correlation
function:

1. if the diameter of B is large, the covariance between two tiles at distance r is equal to Av(B)I,—, +
A2 fo p (&(r +x—y) — 1) dxdy. It can be approximated numerically by computing for example
the integral on a fine grid. Then the finer the grid, the smaller the difference between the exact
values and the approximations, but the computing time cost can become prohibitive.

2. when the diameter of B becomes small, the integral can be approximated by v(B)2g(r) so that the
covariance is approximated by Av(B)I,—, + v(B)?A%g(r),

3. when the diameter becomes very small, C may be approximated by Av(B)I, a situation seldom met
in practice, since it needs a tile B small enough to neglect point dependence.

Approximation (2) will thus be the most reasonable one, needing only a B small enough to consider
that g(r + x) is almost constant for x € B, but avoiding too small B leading to large matrix inversion
time.

Our estimation is roughly pixellated compared to kernel methods, but it does not oversmooth the
intensity of highly aggregated point processes. We could take the benefit of the two approaches to get
smoother estimations. Our on-going work consists in regularizing the counting process by a kernel
and in defining a kriging estimator for the related random field. Our optimal grid could then be used
to define an optimal bandwidth, thus eliminating the Poisson aspect of classical kernels.

Our method provides good predictions in areas at small distances of data locations. From the
definition of the kriging predictor, at distances larger than the range of interaction, it only provide
a constant mean value. To improve it and make it more relevant in practice, we could consider further
information provided by covariates. From our application point of view, wheat field mapping could
be of interest as Montagu’s Harriers nest in there. From a methodological point of view, including
covariates would imply that we should either consider external drift kriging (or any other universal
kriging) rather than ordinary kriging; or spatial regression.

Finally, our kriging predictor depends on the count data in the grid cells, B;, and not on exact data
locations in B;. Thus we can further consider count datasets, as it is often the case in biodiversity
measures, e.g. plant species abundance. The exact position of each plant is rarely given, but we know
its abundance per small unit areas. So, once the pair correlation function is estimated from the point
data subset, one can apply our method to interpolate the intensity.

Appendix A. Proof of Lemma 2.1

(1) E[®(B)®(D)] =E (Z Mx)) CZ My)ﬂ

xXeds €Dg

=E|) ZHB(X)HD(V)}
L x.yeds

=F Z ]IB(x)]ID(x):| +E [Z Z HB(X)HD(y)j|
RE2 XAYyEPs

E Z HBQD(X):| +/ )\Z(X»y) dXdy
BxD

REN
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=/ k(x)dx—l—)»z/ g(x,y)dxdy
BND

BxD

= Av(BND) + A2 / g(x —y) dxdy.
BxD

The following convergence result P [{®(B) = 1} N {® (D) = 1}] = lim,),»)—0 E [P (B)®(D)] ends
the proof. O

Appendix B. Proof of Proposition 2.2

(m=E[Zx)]=E[®(B)] = Av(B)
(2) follows from Lemma 2.1:
2y(r) = E[(@(B) — ®(D))?]
=E[(®(B\D)+ ®(BND)— (D \B) — &(DNB))*]
= E[(®(Bp) — @(D5))*]
= E[®*(Bp)] + E[@*(Ds)] — 2E [#°(Bp)@*(Dp) ]

= Av(Bp) + A? / g(x —y)dxdy + Av(Dp) + A? / g(x—y)dxdy
Bp xBp DpxDp
-2 (Av(BD N Dp) + A2 / g(x —y)dx dy)
BpxDp

= A (v(Bp) + v(Dp)) + A* (/ g(x —y)dxdy
B

D XBp

—l—f g(x—y)dxdy—Z/ g(x—y)dxdy)
DpxDp BpxDp

(3) follows from the approximation P[{®(B) =1}N{®&{D)=1}] =~ A2vB)v(D)g(r) in
Lemma 2.1(4). O

Appendix C. Proof of Egs. (12) and (13)

Let B a square centered at 0 of area v(B) = b%. We denote by VA(x) the gradient vector

BX] ’ 8X2

T
VAX) = VA1, %) = (014,00, 21.00) = (WX) 3A(><)> |

By the following Taylor expansion around the origin
A(x|U) = A(0]U) + x"VA(0[U) + o([Ix])),
we obtain that:

El2(B)] = L/)L(X|U) dx
v(B) v(B) Jp

L /A(O|U) +x"VA(0]U) dx = A(0|U)
v(B) Jg

E[(x|U)]

X

0%

A(x|U) = xTVA(0|U),
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and so

/(A(xlU) —EL.(xU)])” dx ~ /(XTW(0|U))2
B

P

b/2 b2
/ / (x1011(0]U) 4 X9, A(0|U))* dx; dxy
b/2 —b/2

22

[(81)»(0|U))2 + (321(0]U))?].
By consequence when estimating the local intensity, we have from Eq. (10)

IMSE@(XIU))%< /A(XIU) E(U))’ dx) § 2o
Xi€Sops ¥ Bi

b4 2 kv(sobs)
~ (Z VA )+ =

Xi€Sobs
b* Av(S
~ 2 [ vacdu ax+ 220
12 Js s b2
Deriving by the variable b gives
JIMSE (A(x|U 2b 2A0(S
(hxiv)) _ 2b VAU P dx — 2P
ob 12 Js,, b

and thus the solution of #35E = 0 is

®) 12Av(Sops)
D, =
> Js,, IVAGIU)| dx

which is a minimum.

Appendix D. Optimal mesh in practice

The optimal mesh of the estimation grid, v, (B), depends on the unknown terms A and VA(x|U).
In this section, we compare different methods which could be used to compute v, (B) in practice.
We simulated point patterns in the unit square from Thomas point processes with different set of pa-
rameters: («, u) € {(10, 50); (22, 23); (50, 10)} and o € {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}.
Then, v, (B) is computed as follows. First we estimate/compute the intensity ona N x N grid. Sec-
ond, we deduce its gradient from the rate of change between the estimated intensity and its one-cell
translated value. Third, we compute v, (B) and its related grid size (in number of pixels).

We used different methods to estimate the intensity. The counting method consists in estimating
the local intensity in each pixel B; by A(x;|U) = ®(B;)/v(B;). The global kernel smoothing method
is based on a Gaussian kernel estimator with global bandwidth and without border correction,
S0 k(x|U) = D o™ 2w(||x — £]|/h), where w is the density function of a standard normal
distribution. The k-nearest neighbors method is an adaptive nonparametric estimation so that
k(x|U) = 1/(wdi(x)?), with di(x) the distance of x to its k-nearest neighbor. Note that we also
compute the theoretical value of the intensity from Eq. (14).

We considered three N x N-grids, with N € {100, 200, 500}. We compared the distributions of
the optimal grid sizes obtained from 100 realizations of each process and from the different methods,
to the theoretical ones. We select the method which provides the more accurate results and the less
sensitivity to the different scenario. If the counting method works well when the pattern is strongly
aggregated at very small scale (o < 0.005), it requires a fine grid and is inaccurate for other scales of
clustering. Thus in the following it will be no longer considered. The other methods provide globally
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Fig. D.8. Mean of optimal grid sizes computed from 100 Thomas processes with parameters k = 10, © = 50 and from the
k-nearest neighbor based method (green), the kernel based method (red), both evaluated on a 100 x 100 grid (solid line), a
200 x 200 grid (dashed line) and a 500 x 500 grid (dotted line), compared to the theoretical value (black). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

much better values of the optimal grid size. While A(x|U) may be roughly estimated, the integral of
its gradient is sufficiently well approximated to obtain good results. Fig. D.8 shows the optimal grid
sizes (in number of pixels) obtained from different size of the estimation grid: 100 x 100 (solid line),
200 x 200 (dashed line) and 500 x 500 (dotted line). The theoretical grid size is in black and the
ones derived from the kernel smoothing and the k-nearest neighbors method are in red and green
respectively. This figure is related to the Thomas process with parameters x = 10, u = 50, and we
get similar results from the other set of parameters. It appears that the k-nearest neighbors based
method is very sensitive to the size of the estimation grid and tends to over-estimate the optimal grid
size. The kernel based method under-estimates the optimal grid size when the estimation grid is not
fine enough and when the scale of clustering in very small.

From this simulation study, we recommend the kernel based method on a 200 x 200 grid to first
estimate VA (x|U) and then compute the optimal mesh or equivalently the optimal grid size.
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